Search results for "Activator-Inhibitor kinetics"

showing 2 items of 2 documents

Super-critical and sub-critical bifurcations in a reaction-diffusion Schnakenberg model with linear cross-diffusion

2016

In this paper the Turing pattern formation mechanism of a two components reaction-diffusion system modeling the Schnakenberg chemical reaction is considered. In Ref. (Madzavamuse et al., J Math Biol 70(4):709–743, 2015) it was shown how the presence of linear cross-diffusion terms favors the destabilization of the constant steady state. We perform the weakly nonlinear multiple scales analysis to derive the equations for the amplitude of the Turing patterns and to show how the cross-diffusion coefficients influence the occurrence of super-critical or sub-critical bifurcations. We present a numerical exploration of far from equilibrium regimes and prove the existence of multistable stationary…

PhysicsSteady stateApplied MathematicsGeneral MathematicsNumerical analysis010102 general mathematicsPattern formationSettore MAT/01 - Logica Matematica01 natural sciences010305 fluids & plasmasNonlinear systemActivator-inhibitor kinetics Cross-diffusion Turing instability Amplitude equationsAmplitude0103 physical sciencesReaction–diffusion systemStatistical physics0101 mathematicsConstant (mathematics)Settore MAT/07 - Fisica MatematicaTuringcomputercomputer.programming_languageRicerche di Matematica
researchProduct

Turing pattern formation in the Brusselator system with nonlinear diffusion.

2013

In this work we investigate the effect of density dependent nonlinear diffusion on pattern formation in the Brusselator system. Through linear stability analysis of the basic solution we determine the Turing and the oscillatory instability boundaries. A comparison with the classical linear diffusion shows how nonlinear diffusion favors the occurrence of Turing pattern formation. We study the process of pattern formation both in 1D and 2D spatial domains. Through a weakly nonlinear multiple scales analysis we derive the equations for the amplitude of the stationary patterns. The analysis of the amplitude equations shows the occurrence of a number of different phenomena, including stable supe…

Mathematical analysisInner coreFOS: Physical sciencesPattern formationMathematical Physics (math-ph)Pattern Formation and Solitons (nlin.PS)Turing bifurcationNonlinear Sciences - Pattern Formation and SolitonsInstabilityDomain (mathematical analysis)Nonlinear systemBrusselatorAmplitudeActivator-Inhibitor kineticsPattern formationAmplitude equationSettore MAT/07 - Fisica MatematicaTuringcomputerMathematical Physicscomputer.programming_languageMathematicsPhysical review. E, Statistical, nonlinear, and soft matter physics
researchProduct